Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Food Chem ; 449: 139214, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38581790

RESUMO

This study investigated the effects of ultrasound-assisted phosphorylation on gelling properties of fish gelatin (FG). Ultrasound-assisted phosphorylation (UP) for 60, 90, and 120 min resulted in >6.54% increase of phosphorylation degree and decreased zeta potential of FG. Atomic force microscopy revealed that UP-FGs showed larger aggregates than P-FGs (normal phosphorylation FGs). Low frequent-NMR and microstructure analysis revealed that phosphorylation enhanced water-binding capability of FG and improved the gel networks. However, UP60 had the highest gel strength (340 g), gelling (17.96 °C) and melting (26.54 °C) temperature while UP90 and UP120 showed slightly lower of them. FTIR analysis indicated thatß-sheet and triple helix content increased but random coil content decreased in phosphorylated FGs. Mass spectrometry demonstrated phosphate groups mainly bound to serine, threonine and tyrosine residues of FG and UP-FG exhibited more phosphorylation sites. The study showed that mild phosphorylation (UP60) could be applied to improve FG gel properties.

2.
Toxicol In Vitro ; : 105834, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657713

RESUMO

Triphenyltin chloride (TPTCL) is widely used in various industrial and agricultural applications. This study aimed to elucidate the mechanisms underlying the toxicological effects of TPTCL on oocytes. The obtained findings revealed that TPTCL exposure reduced polar body extrusion (PBE) and induced meiotic arrest. Mechanistically, TPTCL disrupted meiotic spindle assembly and chromosome alignment. Further analysis indicated a significant decrease in p-MAPK expression, and disturbances in the localization of Pericentrin and p-Aurora A in TPTCL exposed oocytes, which suggesting impaired microtubule organizing center (MTOC)function. Moreover, TPTCL exposure enhance microtubule acetylation and microtubule instability. Therefore, the spindle assembly checkpoint (SAC) remained activated, and the activity of the anaphase-promoting complex (APC) was inhibited, thereby preventing oocytes from progressing into the entering anaphase I (AI) stage. TPTCL exposure also augmented the actin filaments in the cytoplasm. Notably, mitochondrial function appeared unaffected by TPTCL, as evidenced indicated by stable mitochondrial membrane potential and ATP content. Furthermore, TPTCL treatment altered H3K27me2, H3K27me3 and H3K9me3 levels, suggesting changes in epigenetic modifications in oocytes. Taken together, our results suggest that TPTCL disrupts cytoskeleton assembly, continuously activates SAC, inhibits APC activity, and blocks meiotic progression, ultimately impair oocyte maturation.

3.
Eur J Med Chem ; 268: 116267, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422701

RESUMO

PD-L1 is an important immune checkpoint protein that can bind to T cells' PD-1 receptor, thereby promoting immune escape from tumors. In recent years, many researchers have developed strategies to degrade PD-L1 to improve the effect of immunotherapy. The study of degrading PD-L1 provides new opportunities for immunotherapy. Here, we mainly summarize and review the current active molecules and mechanisms that mediate the degradation of immature and mature PD-L1 during the post-translational modification stages, involving PD-L1 phosphorylation, glycosylation, palmitoylation, ubiquitination, and the autophagy-lysosomal process. This review expects that by degrading PD-L1 protein, we will not only gain a better understanding of oncogenic mechanisms involving tumor PD-L1 protein but also provide a new way to improve immunotherapy.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional , Imunoterapia , Linfócitos T
4.
J Agric Food Chem ; 72(8): 4339-4347, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38351620

RESUMO

This study aimed to investigate the role of the yeast cell wall and membrane in enhancing osmotic tolerance by antioxidant dipeptides (ADs) including Ala-His (AH), Thr-Tyr (TY), and Phe-Cys (FC). Results revealed that ADs could improve the integrity of the cell wall by restructuring polysaccharide structures. Specifically, FC significantly (p < 0.05) reduced the leakage of nucleic acid and protein by 2.86% and 5.36%, respectively, compared to the control. In addition, membrane lipid composition played a crucial role in enhancing yeast tolerance by ADs, including the increase of cell membrane integrity and the decrease of permeability by regulating the ratio of unsaturated fatty acids. The up-regulation of gene expression associated with the cell wall integrity pathway (RLM1, SLT2, MNN9, FKS1, and CHS3) and fatty acid biosynthesis (ACC1, HFA1, OLE1, ERG1, and FAA1) further confirmed the positive impact of ADs on yeast tolerance against osmotic stress.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Antioxidantes/metabolismo , Pressão Osmótica , Parede Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Quitina Sintase/metabolismo
5.
ACS Appl Mater Interfaces ; 16(8): 9854-9867, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38375789

RESUMO

Extracellular vesicles (EVs) possess favorable biocompatibility and immunological characteristics, making them optimal carriers for bioactive substances. In this study, an innovative hepatic-targeted vesicle system encapsulating with fucoxanthin (GA-LpEVs-FX) was successfully designed and used to alleviate nonalcoholic fatty liver disease. The formulation entails the self-assembly of EVs derived from Lactobacillus paracasei (LpEVs), modification with glycyrrhetinic acid (GA) via amide reaction offering the system liver-targeting capacity and loading fucoxanthin (FX) through sonication treatment. In vitro experiments demonstrated that GA-LpEVs-FX effectively mitigated hepatic lipid accumulation and attenuated reactive oxygen species-induced damage resulting lipid accumulation (p < 0.05). In vivo, GA-LpEVs-FX exhibited significant downregulation of lipogenesis-related proteins, namely, fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC1), and sterol regulatory element binding protein 1 (SREBP-1), subsequently ameliorating lipid metabolism disorders (p < 0.05), and the stability of GA-LpEVs-FX significantly improved compared to free FX. These findings establish a novel formulation for utilizing foodborne components for nonalcoholic fatty liver disease alleviation.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Xantofilas , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Biomimética , Fígado/metabolismo , Lipídeos/farmacologia , Metabolismo dos Lipídeos
7.
Food Chem ; 442: 138474, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38245982

RESUMO

Fucoxanthin is a xanthophyll carotenoid that possesses potent antioxidant, anti-obesity, and anti-tumor properties. However, its limited solubility in water and susceptibility to degradation create challenges for its application. In this study, a microfluidic coaxial electrospinning technique was used to produce core-shell zein-gelatin nanofibers for encapsulating fucoxanthin, enhancing its bioavailability, and improving its stability. In comparison to uniaxially-loaded fucoxanthin nanofibers, the encapsulation efficiency of fucoxanthin reached 98.58 % at a core-shell flow rate ratio of 0.26:1, representing a 14.29 % improvement. The photostability of the nanofibers increased by 74.59 % after three days, UV stability increased by 38.82 % after 2 h, and temperature stability also significantly improved, demonstrating a protective effect under harsh environmental conditions (P < 0.05). Additionally, nanofibers effectively alleviated oleic acid-induced reactive oxygen species production and reduced fluorescence intensity by 54.76 %. MTT experiments indicated great biocompatibility of the nanofibers, effectively mitigating mitochondrial membrane potential polarization and lipid accumulation in HepG2 cells. Overall, the microfluidic coaxial electrospinning technique enables promising applications of fucoxanthin delivery in the food industry.


Assuntos
Nanofibras , Microfluídica , Xantofilas/farmacologia , Lipídeos
8.
Food Res Int ; 176: 113803, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163684

RESUMO

To extend shelf life of fermented spicy Chinese cabbage sauce at room temperature, the effects of electron beam irradiation (EBI), high pressure processing (HPP), pasteurization (PT) and autoclave sterilization (AS) treatments on the colony counts of Lactobacillus plantarum, phytochemicals, antioxidant activities and volatile compounds were investigated. Results showed that thermal and non-thermal treatments could significantly decrease the colony counts of Lactobacillus plantarum, in which EBI and AS treatments inactivated Lactobacillus plantarum thoroughly. EBI and HPP treatments were superior to PT and AS treatments in terms of volatile compounds, bioactive compounds and antioxidant activities. The total contents of volatile compounds in sauces treated by EBI and HPP were significantly increased by 43.92%-61.87% and 71.53%-84.46%, respectively, and the new formed substance 2,3-butanedione endowed sauces with sweet and creamy aroma. In addition, HPP treatment improved the extractable contents of total phenolics and carotenoids, retained capsicum red pigment content, and significantly enhanced antioxidant capacities of sauces. Sauce treated by HPP at 200 MPa exhibited the highest total carotenoid content, DPPH radical scavenging activity and FRAP, increasing by 9.27%, 2.24% and 16.13%, respectively, compared with CK. EBI treatment exhibited higher total phenolic content and FRAP, which positively depended on the dose. Therefore, HPP and EBI treatments were suggested as potential technologies to improve shelf-life stability and volatile compounds of fermented spicy Chinese cabbage sauce.


Assuntos
Brassica , Lactobacillus plantarum , Antioxidantes/análise , Carotenoides/análise , Pasteurização , Fenóis/química , Compostos Fitoquímicos
9.
Medicine (Baltimore) ; 102(34): e34756, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37653820

RESUMO

To analyze the factors associated with infection after flap transfer for hand trauma and use them to develop nursing strategies and observe the effects of their application. Eighty-two patients admitted to our hospital for flap transfer for hand trauma from January 2020 to May 2020 were selected for the retrospective analysis. Logistic regression analysis was performed to analyze the factors associated with postoperative infections to develop care strategies. Another 88 patients admitted for flap transfer for hand trauma from September 2020 to June 2021 were retrospectively analyzed and divided into the observation (n = 44) and control groups (n = 44) according nursing strategies that they received. The operative time, intraoperative bleeding, incision healing time, first postoperative time to get out of bed on their own and hospital stay were compared between the 2 groups. The patients postoperative adverse effects and flap survival rates were also counted. visual analogue score, total active motion, manual muscle test, Barthel index, self-rating anxiety scale, self-rating depression scale scores were used to assess patients pain, hand function recovery and psychology before and after treatment. Logistic regression analysis manifested that postoperative bed rest time, affected limb immobilization, and pain were independent factors affecting postoperative infection after flap transfer (P < .05). After using targeted care strategies, the observation group had dramatically shorter operative time, intraoperative bleeding, incision healing time, time to first postoperative bed release on their own, and hospital stay, less postoperative pain and adverse effects, and higher flap survival rate than the control group (P < .05). Total active motion, manual muscle test, and Barthel index were higher in the observation group than in the control group after treatment, while self-rating anxiety scale and self-rating depression scale scores were lower than in the control group (P < .05). Finally, total satisfaction was higher in the observation group than in the control group (P < .05). Postoperative bedtime, fixation of the affected limb, and pain are independent factors affecting postoperative infection after flap transfer for hand trauma. Implementing infection prevention care strategies based on these factors can effectively improve the safety of flap transfer, reduce the possibility of infection, and shorten the recovery period of patients, which has high clinical application value.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Traumatismos da Mão , Humanos , Estudos Retrospectivos , Traumatismos da Mão/cirurgia , Extremidade Superior , Hospitalização , Dor
10.
J Agric Food Chem ; 71(33): 12538-12548, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37578164

RESUMO

High concentrations of ethanol could cause intracellular oxidative stress in yeast, which can lead to ethanol-oxidation cross-stress. Antioxidant dipeptides are effective in maintaining cell viability and stress tolerance under ethanol-oxidation cross-stress. In this study, we sought to elucidate how antioxidant dipeptides affect the yeast cell wall and membrane defense systems to enhance stress tolerance. Results showed that antioxidant dipeptide supplementation reduced cell leakage of nucleic acids and proteins by changing cell wall components under ethanol-oxidation cross-stress. Antioxidant dipeptides positively modulated the cell wall integrity pathway and up-regulated the expression of key genes. Antioxidant dipeptides also improved the cell membrane integrity by increasing the proportion of unsaturated fatty acids and regulating the expression of key fatty acid synthesis genes. Moreover, the addition of antioxidant dipeptides significantly (p < 0.05) increased the content of ergosterol. Ala-His (AH) supplementation caused the highest content of ergosterol, with an increase of 23.68 ± 0.01% compared to the control, followed by Phe-Cys (FC) and Thr-Tyr (TY). These results revealed that the improvement of the cell wall and membrane functions of antioxidant dipeptides was responsible for enhancing the ethanol-oxidation cross-stress tolerance of yeast.


Assuntos
Antioxidantes , Saccharomyces cerevisiae , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Parede Celular/metabolismo , Membrana Celular/metabolismo , Etanol/metabolismo , Ergosterol , Dipeptídeos/farmacologia , Dipeptídeos/metabolismo
11.
Foods ; 12(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569097

RESUMO

This study aimed to investigate the effects of galacto-oligogalactose (GOS) glycosylation on the structural and functional properties of fish gelatin (FG). Results showed that with the increase of glycosylation time, grafting degree and browning increased, and new protein bands with increased molecular weight were observed by SDS-PAGE. Structural analysis showed that glycosylation reduced intrinsic fluorescence intensity and increased surface hydrophobicity of FG. FTIR analysis showed α-helix content decreased while random coil content increased in glycosylated FG. Emulsion activity index and emulsion stability index along with foam activity and foam stability were significantly elevated in GOS-4 and GOS-8, but FG glycosylated longer than 12 h exhibited less pronounced improvement. Glycosylated FG showed lower gel strength than control. The results indicate that moderate glycosylation could be applied to improve interfacial properties of FG.

12.
J Med Chem ; 66(15): 10579-10603, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37496104

RESUMO

Novel 2-arylmethoxy-4-(2,2'-dihalogen-substituted biphenyl-3-ylmethoxy) benzylamine derivatives were designed, synthesized, and evaluated in vitro and in vivo against cancers as PD-1/PD-L1 inhibitors. Through the computer-aided structural optimization and the homogeneous time-resolved fluorescence (HTRF) assay, compound A56 was found to most strongly block the PD-1/PD-L1 interaction with an IC50 value of 2.4 ± 0.8 nM and showed the most potent activity. 1H NMR titration results indicated that A56 can tightly bind to the PD-L1 protein with KD < 1 µM. The X-ray diffraction data for the cocrystal structure of the A56/PD-L1 complex (3.5 Å) deciphered a novel binding mode in detail, which can account for its most potent inhibitory activity. Cell-based assays further demonstrated the strong ability of A56 as an hPD-1/hPD-L1 blocker. Especially in an hPD-L1 MC38 humanized mouse model, A56 significantly inhibited tumor growth without obvious toxicity, with a TGI rate of 55.20% (50 mg/kg, i.g.). In conclusion, A56 is a promising clinical candidate worthy of further development.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Animais , Camundongos , Antígeno B7-H1 , Benzilaminas/farmacologia , Receptor de Morte Celular Programada 1/metabolismo , Hidrocarbonetos Halogenados/química , Hidrocarbonetos Halogenados/farmacologia
13.
J Enzyme Inhib Med Chem ; 38(1): 2230388, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37439326

RESUMO

Recent studies on biphenyl-containing compounds, a type of PD-1/PD-L1 blocker which binds to PD-L1 and induces dimerisation, have focussed on its immune function. Herein, 10 novel biphenyl derivatives were designed and synthesised. The results of the CCK-8 showed that compounds have different anti-tumour activities for tumour cells in the absence of T cells. Particularly, 12j-4 can significantly induce the apoptosis of MDA-MB-231 cells (IC50 = 2.68 ± 0.27 µM). In further studies, 12j-4 has been shown to prevent the phosphorylation of AKT by binding to cytoplasmic PD-L1, which induces apoptosis in MDA-MB-231 cells through non-immune pathways. The inhibition of AKT phosphorylation restores the activity of GSK-3ß, ultimately resulting in the degradation of PD-L1. Besides, in vivo study indicated that 12j-4 repressed tumour growth in nude mice. As these biphenyls exert their anti-tumour effects mainly through non-immune pathways, they are worthy of further study as PD-L1 inhibitors.


Assuntos
Compostos de Bifenilo , Neoplasias da Mama , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Antígeno B7-H1 , Glicogênio Sintase Quinase 3 beta , Camundongos Nus , Neoplasias da Mama/tratamento farmacológico , Compostos de Bifenilo/farmacologia
14.
Food Microbiol ; 114: 104288, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290871

RESUMO

Although high gravity brewing technology has been widely used for beer industries due to its economic benefits, yeast cells are subjected to multiple environmental stresses throughout the fermentation process. Eleven bioactive dipeptides (LH, HH, AY, LY, IY, AH, PW, TY, HL, VY, FC) were selected to evaluate their effects on cell proliferation, cell membrane defense system, antioxidant defense system and intracellular protective agents of lager yeast against ethanol-oxidation cross-stress. Results showed that the multiple stresses tolerance and fermentation performance of lager yeast were enhanced by bioactive dipeptides. Cell membrane integrity was improved by bioactive dipeptides through altering the structure of macromolecular compounds of the cell membrane. Intracellular reactive oxygen species (ROS) accumulation was significantly decreased by bioactive dipeptides, especially for FC, decreasing by 33.1%, compared with the control. The decrease of ROS was closely related to the increase of mitochondrial membrane potential, intracellular antioxidant enzyme activities including superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), and glycerol level. In addition, bioactive dipeptides could regulate the expression of key genes (GPD1, OLE1, SOD2, PEX11, CTT1, HSP12) to enhance the multilevel defense systems under ethanol-oxidation cross-stress. Therefore, bioactive dipeptides should be potentially efficient and feasible bioactive ingredients to improve the multiple stresses tolerance of lager yeast during high gravity fermentation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Fermentação , Etanol/metabolismo , Cerveja , Peroxinas/metabolismo , Proteínas de Membrana , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
World J Microbiol Biotechnol ; 39(6): 165, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37071336

RESUMO

Corynebacterium glutamicum porphobilinogen synthase (PBGS) is a metal enzyme with a hybrid active site metal binding sequence. In this study, the porphobilinogen synthase gene of C. glutamicum was cloned and heterogeneously expressed in Escherichia coli. C. glutamicum PBGS was purified, and its enzymatic characteristics were analyzed. The results showed that C. glutamicum PBGS is a Zn2+-dependent enzyme, and Mg2+ has allosteric regulation. The allosteric Mg2+ plays a vital role in forming the quaternary structure of C. glutamicum PBGS. Based on the ab initio predictive structure modeling of the enzyme and the molecular docking model of 5-aminolevulinic acid (5-ALA), 11 sites were selected for site-directed mutagenesis. When the hybrid active site metal binding site of C. glutamicum PBGS is converted into a cysteine-rich motif (Zn2+-dependent) or an aspartic acid-rich motif (Mg2+/K+-dependent), the enzyme activity is basically lost. Four residues, D128, C130, D132, and C140, in the metal binding site, were the binding sites of Zn2+ and the active center of the enzyme. The band migration, from the native PAGE, of five variants with mutations in the center of enzyme activity was the same as that of the variant enzymes as purified, individually adding two metal ion chelating agents. Their Zn2+ active center structures were abnormal, and the quaternary structure equilibrium was altered. The destroyed active center affects the construction of its quaternary structure. The quaternary structural balance between octamer and hexamer through dimers was regulated by the allosteric regulation of C. glutamicum PBGS. The enzyme activity was also affected by the change of the active site lid structure and (α ß)8-barrel structure caused by mutation. Structural changes in the variants were analyzed to understand C. glutamicum PBGS better.


Assuntos
Corynebacterium glutamicum , Sintase do Porfobilinogênio , Sintase do Porfobilinogênio/genética , Sintase do Porfobilinogênio/química , Sintase do Porfobilinogênio/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Simulação de Acoplamento Molecular , Metais , Sítios de Ligação , Ácido Aminolevulínico
16.
Biomaterials ; 297: 122107, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37058897

RESUMO

Extracellular vesicles (EVs) are very attractive as carriers of active components due to their good immunological and their ability to penetrate the physiological barrier that synthetic delivery carriers cannot penetrate. However, the low secretion capacity of EVs limited its widespread adoption, let alone the lower yield of EVs loaded with active components. Here, we report a large-scale engineering preparation strategy of synthetic probiotic membrane vesicles for encapsulating fucoxanthin (FX-MVs), an intervention for colitis. Compared with the EVs naturally secreted by probiotics, the engineering membrane vesicles showed a 150-fold yield and richer protein. Moreover, FX-MVs improved the gastrointestinal stability of fucoxanthin and inhibited H2O2-induced oxidative damage by scavenging free radicals effectively (p < 0.05). The in vivo results showed that FX-MVs could promote the polarization of macrophages to M2 type, prevent the injury and shortening of colon tissue (p < 0.05), and improve the colonic inflammatory response. Consistently, proinflammatory cytokines were effectively suppressed after FX-MVs treatment (p < 0.05). Unexpectedly, such engineering FX-MVs could also reshape the gut microbiota communities and improve the abundance of short-chain fatty acids in the colon. This study lays a foundation for developing dietary interventions using natural foods to treat intestinal-related diseases.


Assuntos
Colite , Probióticos , Humanos , Peróxido de Hidrogênio , Colite/terapia , Citocinas/metabolismo , Probióticos/uso terapêutico
17.
Math Biosci Eng ; 20(2): 4018-4039, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36899615

RESUMO

Uterine corpus endometrial cancer (UCEC) is the sixth most common female cancer worldwide, with an increasing incidence. Improving the prognosis of patients living with UCEC is a top priority. Endoplasmic reticulum (ER) stress has been reported to be involved in tumor malignant behaviors and therapy resistance, but its prognostic value in UCEC has been rarely investigated. The present study aimed to construct an ER stress-related gene signature for risk stratification and prognosis prediction in UCEC. The clinical and RNA sequencing data of 523 UCEC patients were extracted from TCGA database and were randomly assigned into a test group (n = 260) and training group (n = 263). An ER stress-related gene signature was established by LASSO and multivariate Cox regression in the training group and validated by Kaplan-Meier survival analysis, Receiver Operating Characteristic (ROC) curves and nomograms in the test group. Tumor immune microenvironment was analyzed by CIBERSORT algorithm and single-sample gene set enrichment analysis. R packages and the Connectivity Map database were used to screen the sensitive drugs. Four ERGs (ATP2C2, CIRBP, CRELD2 and DRD2) were selected to build the risk model. The high-risk group had significantly reduced overall survival (OS) (P < 0.05). The risk model had better prognostic accuracy than clinical factors. Tumor-infiltrating immune cells analysis depicted that CD8+ T cells and regulatory T cells were more abundant in the low-risk group, which may be related to better OS, while activated dendritic cells were active in the high-risk group and associated with unfavorable OS. Several kinds of drugs sensitive to the high-risk group were screened out. The present study constructed an ER stress-related gene signature, which has the potential to predict the prognosis of UCEC patients and have implications for UCEC treatment.


Assuntos
Algoritmos , Neoplasias do Endométrio , Humanos , Feminino , Linfócitos T CD8-Positivos , Bases de Dados Factuais , Estresse do Retículo Endoplasmático , Microambiente Tumoral , Proteínas de Ligação a RNA
18.
Microorganisms ; 11(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36838239

RESUMO

Replant disease caused by continuous cropping commonly occurs in yam with consecutive monoculture. However, little is known about how the continuous cropping of yam affects the rhizospheric soil bacterial community structure. In this study, the effects of continuous cropping on rhizospheric soil characteristics, bacterial diversity, and community structure were investigated in the Yongfeng yam fields under monoculture for 1, 5, 10, 15, and 20 years. Long-term monoculture caused soil acidification and increased the concentration of available potassium (AK) and available phosphorus (AP), and soil bacterial richness, but decreased the soil bacterial diversity. An exception was for the field under monoculture for 20 years as it showed the highest bacterial diversity. The relative abundance of beneficial bacteria, such as Proteobacteria, Actinobacteria, and Chloroflexi decreased while the relative abundance of harmful bacteria, including Gemmatimonadetes and Acidobacteria, increased with an extended continuous cultivation time. The networks varied among yams with different cultivation years and became complex with the increase in cultivation years. However, after time in monoculture, the bacterial network decreased gradually and existed stably. These changes in bacterial community composition and co-occurrence of networks may increase the potential risk of soil-borne disease and reduce the yield and quality of Yongfeng yam.

19.
J Bone Joint Surg Am ; 105(1): 53-62, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598475

RESUMO

BACKGROUND: Quantitative regional assessment of thoracic function would enable clinicians to better understand the regional effects of therapy and the degree of deviation from normality in patients with thoracic insufficiency syndrome (TIS). The purpose of this study was to determine the regional functional effects of surgical treatment in TIS via quantitative dynamic magnetic resonance imaging (MRI) in comparison with healthy children. METHODS: Volumetric parameters were derived via 129 dynamic MRI scans from 51 normal children (November 2017 to March 2019) and 39 patients with TIS (preoperatively and postoperatively, July 2009 to May 2018) for the left and right lungs, the left and right hemi-diaphragms, and the left and right hemi-chest walls during tidal breathing. Paired t testing was performed to compare the parameters from patients with TIS preoperatively and postoperatively. Mahalanobis distances between parameters of patients with TIS and age-matched normal children were assessed to evaluate the closeness of patient lung function to normality. Linear regression functions were utilized to estimate volume deviations of patients with TIS from normality, taking into account the growth of the subjects. RESULTS: The mean Mahalanobis distances for the right hemi-diaphragm tidal volume (RDtv) were -1.32 ± 1.04 preoperatively and -0.05 ± 1.11 postoperatively (p = 0.001). Similarly, the mean Mahalanobis distances for the right lung tidal volume (RLtv) were -1.12 ± 1.04 preoperatively and -0.10 ± 1.26 postoperatively (p = 0.01). The mean Mahalanobis distances for the ratio of bilateral hemi-diaphragm tidal volume to bilateral lung tidal volume (BDtv/BLtv) were -1.68 ± 1.21 preoperatively and -0.04 ± 1.10 postoperatively (p = 0.003). Mahalanobis distances decreased after treatment, suggesting reduced deviations from normality. Regression results showed that all volumes and tidal volumes significantly increased after treatment (p < 0.001), and the tidal volume increases were significantly greater than those expected from normal growth for RDtv, RLtv, BDtv, and BLtv (p < 0.05). CONCLUSIONS: Postoperative tidal volumes of bilateral lungs and bilateral hemi-diaphragms of patients with TIS came closer to those of normal children, indicating positive treatment effects from the surgical procedure. Quantitative dynamic MRI facilitates the assessment of regional effects of a surgical procedure to treat TIS. LEVEL OF EVIDENCE: Diagnostic Level II. See Instructions for Authors for a complete description of levels of evidence.


Assuntos
Pulmão , Respiração , Criança , Humanos , Pulmão/diagnóstico por imagem , Pulmão/cirurgia , Tórax/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Volume de Ventilação Pulmonar
20.
Appl Biochem Biotechnol ; 195(10): 6032-6049, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36418709

RESUMO

The phytochemical characteristics and antioxidant capacities of fermented apple juice (FAJ) by Lactobacillus plantarum 90 (Lp90) and Lactobacillus acidophilus 85 (La85) during refrigerated storage and simulated gastrointestinal digestion (SGD) were investigated. Viable counts of Lp90 and La85 were decreased, while phenolic content and antioxidant capacities were improved during refrigerated storage, especially for the increased chlorogenic acid content. Ester content was decreased slightly after refrigeration, while the primary esters including ethyl acetate, amyl acetate, and ethyl 2-methylbutyrate were significantly increased (p < 0.05). Furthermore, ketone content was increased significantly after refrigeration (p < 0.05). In addition, viable counts of Lp90 and La85 remained higher than 6 log CFU/mL after SGD. The presence of probiotics delayed the decrease of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability and increased ferric reducing antioxidant power (FRAP) of FAJ. The contents of gallic acid, chlorogenic acid, epicatechin, ferulic acid, and phlorizin were decreased, while ellagic acid and rutin contents in FAJ were significantly increased after SGD (p < 0.05).


Assuntos
Lactobacillus plantarum , Malus , Probióticos , Antioxidantes/química , Malus/metabolismo , Fermentação , Lactobacillus plantarum/metabolismo , Lactobacillus acidophilus , Digestão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...